国产精品对白交换视频_在线精品福利_小雪奶水翁胀公吸小说_看黄色录像一级片_3级毛片儿日本三级毛片_青青激情视频

全部新聞 公司新聞 產品新聞 資料下載 行業新聞
印度國立果阿技術學院--硬碳在鈉離子電池中的微觀結構與鈉離子儲存機制的研究
       硬碳(HC)作為鈉離子電池負極材料,因其高容量和低成本優勢備受關注,但其儲鈉機制仍存爭議。研究發現:1)具有較大層間距(>0.37nm)和更小、更薄偽石墨域的硬碳更利于鈉離子嵌入;2)長程有序石墨結構會降低可逆容量;3)通過三種商業硬碳的原位XRD和拉曼測試驗證了"吸附-嵌入-填充"機制。研究背景顯示:鋰資源短缺促使鈉離子電池發展,但石墨負極不適用鈉存儲。硬碳由無序石墨域和渦輪層狀納米域構成,雖是最佳候選材料,但其復雜結構導致儲鈉機制存在"嵌入-填充"、"吸附-填充"和"吸附-嵌入-填充"三種理論爭議。Stevens等(2000年)首次提出"嵌入-填充"機制,但后續研究顯示(002)峰無預期偏移;Tarascon團隊提出"吸附-填充"機制;Ji等通過GITT測試提出"吸附-嵌入-填充"機制,但微觀結構與儲鈉性能的關聯仍需明確。
 
 
圖1. 電磁波的應用。
 
 
圖2. 電磁波與吸收材料的相互作用。
圖2清晰地表明該圖將展示電磁波的能量是如何被特定類型的材料吸收(消耗)的,這是電磁波傳播、能量轉換和材料科學中的一個關鍵過程。理解這個標題對于解讀圖2所描述的具體相互作用機制至關重要。
 
 
圖3. 微波吸收體中損耗類型的分類。
圖3表明該圖旨在系統性地展示和區分微波吸收體內部存在的‌不同能量耗散方式(損耗類型)‌。理解這些損耗類型的分類是研究和設計高性能微波吸收材料(如用于隱身技術、電磁兼容、微波暗室等)的理論基石。這張圖對于深入掌握微波吸收體的工作原理和性能優化至關重要。
 
 
圖4. 微波吸收材料呈現的多種損耗(示意圖)。‌
圖4旨在‌形象地說明‌不同類型的能量損耗(如介電損耗、磁損耗、傳導損耗等)是如何在‌實際的微波吸收材料中發生和表現出來‌的。它是對 Fig.3 損耗類型分類的圖示化表達,幫助讀者更直觀地理解多種損耗機制在吸收材料內部的共存和作用方式,是理解微波吸收材料工作原理的重要一環。
 
 
圖5. 微波吸收材料分類。
圖5表明該圖旨在對實現微波吸收功能的各種材料進行‌系統性分類‌,為讀者提供一個關于微波吸收材料‌種類全貌和內在邏輯結構‌的清晰認識。理解這種分類對于根據不同的應用需求(如頻段要求、厚度限制、環境條件、力學性能、成本等)‌選擇合適的吸收材料類型‌至關重要。這張圖標志著從基礎原理和機制討論向材料體系和應用選擇的過渡。
與前文的上下文關聯與邏輯演進:
‌Fig.1 (應用):‌ 介紹微波(電磁波)的用途。
‌Fig.2 (相互作用):‌ 解釋電磁波能量如何被吸收材料‌整體‌消耗(吸收)的核心物理過程(損耗)。
· ‌Fig.3 (損耗機制分類):‌ 深入剖析實現吸收的‌核心物理機制‌(介電損耗、磁損耗、電阻損耗等)的類型。
· ‌Fig.4 (多種損耗表現):‌ ‌圖示化‌展示多種損耗機制在具體材料中是如何‌體現和作用‌的。
· ‌Fig.5 (材料分類):‌ 這是前四張圖知識的‌綜合應用和體系化歸納‌。在理解了微波吸收的原理(Fig.2)、核心機制(Fig.3, Fig.4)之后,自然需要系統地認識實現這些功能的‌物質載體——微波吸收材料本身的各種類型‌。這張圖提供了一個‌宏觀視角‌,展示了微波吸收材料領域的‌整體框架和多樣性‌。它回答了“為了實現微波吸收,我們可以使用哪些不同類型/原理的材料?”這個問題。
· ‌邏輯鏈:‌ 現象/應用 (Fig.1) → 基礎物理過程 (Fig.2) → 微觀機制剖析 (Fig.3, Fig.4) → 物質載體體系化 (Fig.5)。
 
 
圖6. 用于微波吸收的碳基材料。
該圖‌聚焦于微波吸收領域中一類關鍵的功能材料——碳基材料‌。圖6 是 ‌Fig.5 (整體材料分類) 的自然延伸和具體化‌,它標志著文檔內容從‌基礎原理和宏觀分類‌轉向對‌主流核心材料類別及其在吸波應用中的特性‌進行詳細展示和探討。這張圖對于理解當前微波吸收材料研究的熱點和重要發展方向(特別是在輕質、寬頻、高性能薄層吸收體方面)具有重要價值。
 
 
圖7. a) CB/Pp復合材料中吸收損耗機制的示意圖(經文獻[117]許可改編);b-g) 3D打印CB/P!復合材料的二次電子成像(SEI)圖,其中炭黑(CB)含量從100g (b) 變化至84g (g);h-i) 氧化鋅(ZnO)晶須與CB顆粒的掃描電鏡(SEM)圖(經文獻[117]許可改編);j-k) 碳化硅(SiC)與CB顆粒的場發射掃描電鏡(FE-SEM)圖(經文獻[120]許可改編);l) 以鐵氧體/環氧樹脂為匹配層、炭黑/環氧樹脂為吸收層的反射損耗曲線(經文獻[119]許可改編)。‌

‌圖示內容分解‌

· ‌a圖‌:展示‌炭黑/聚合物復合材料(CB/Pp)的吸收損耗物理機制‌,通過示意圖解釋材料內部電磁波能量耗散過程。
· ‌b-g圖‌:通過‌二次電子成像(SEI)‌ 呈現不同CB含量(100g→84g)的3D打印復合材料‌微觀形貌變化‌,反映填料濃度對材料結構的影響。
· ‌h-i圖‌:‌氧化鋅晶須(ZnO whiskers)與CB顆粒的形貌表征‌,揭示異質組分在復合材料中的分散狀態。
· ‌j-k圖‌:‌碳化硅(SiC)與CB填料的微觀結構對比‌,突顯不同吸收劑顆粒的幾何特征。
· ‌l圖‌:‌雙層吸波結構性能測試‌,以鐵氧體/環氧樹脂為阻抗匹配層、CB/環氧樹脂為吸收層,測量其反射損耗(Reflection Loss),驗證協同吸波效果。
 
 
圖8. a) MnO@C豌豆莢狀結構的制備示意圖;b-e) MnO@C的掃描電鏡(SEM)圖,展示豌豆莢狀結構;f) 不同厚度MnO@C的反射損耗曲線;g-h) MnO@C中的損耗機制示意圖(經文獻[131]許可改編);i-n) 磁性粒子濃度為0、0.5、1、1.5、2、2.5倍時制備的CF/FeCoNi復合材料SEM圖;o) CF(碳纖維)、CF/FeCoNi、CF/FeCo、CF/Ni及CF/CoNi的反射損耗曲線(經文獻[132]許可改編)。
一、材料結構與設計
‌MnO@C豌豆莢結構(a-f圖)
‌核殼設計‌:MnO納米顆粒(核)封裝于碳層(殼)中,形成類似豌豆莢的一維鏈狀結構。
‌功能優勢‌:碳殼提升導電性,增強介電損耗;核殼界面極化優化電磁波衰減。
‌厚度調控(f圖)‌:通過調整材料厚度實現反射損耗峰值頻段可調(如4–8 GHz低頻吸收需求)。
‌CF/FeCoNi梯度復合材料(i-o圖)
‌磁性粒子梯度分布‌:FeCoNi磁性粒子在碳纖維(CF)基體中呈濃度梯度(0→2.5倍),調控阻抗匹配。
‌多組分協同(o圖)‌:
‌CF/FeCoNi‌:磁-介電協同損耗(FeCoNi提供磁損耗,CF介電損耗);
‌CF/CoNi‌:磁導率適中,減少表面反射。
?? 二、損耗機制(g-h圖)
‌介電損耗‌:碳殼界面極化、MnO缺陷偶極子弛豫;
‌磁損耗‌:FeCoNi渦流損耗及自然共振;
‌協同效應‌:核殼界面電荷積累增強極化損耗,磁性粒子拓寬頻帶。
 
 
圖9. a) 不同質量分數環氧樹脂/多壁碳納米管(epoxy/MWNCNT)復合材料在X波段的復介電常數與復磁導率實部及虛部(經文獻[136]許可改編);b-d) 樣品A、B、C的低倍透射電鏡(TEM)圖;e) 樣品E的高分辨透射電鏡(HRTEM)圖;f) 樣品A-E的吸收譜(經文獻[137]許可改編);g-j) 分別為BF(g)、BF/Co.5(h)、BF/C1(i)、BF/C2(j)的TEM圖;k) CNT/BaFe??O??復合材料的微波吸收機制示意圖(經文獻[138]許可改編);l) 不同樣品及其對應厚度的反射損耗曲線(經文獻[140]許可改編)。

一、圖示邏輯框架

‌子圖‌ ‌核心內容‌ ‌科學意義‌
‌a圖‌ MWNCNT含量對復電磁參數(ε', ε'', μ', μ'')的影響 量化填料濃度調控介電/磁響應能力
‌b-e圖‌ 多組樣品(A-E)的微觀形貌表征(低倍→高倍TEM) 揭示納米結構差異與缺陷特征
‌f圖‌ 樣品A-E的吸收性能對比 關聯微觀結構與宏觀吸波性能
‌g-j圖‌ BaFe??O??(BF)與CNT的復合梯度結構(Co→C2) 磁性-介電組分空間分布優化設計
‌k圖‌ CNT/BF復合吸波機制示意圖 多損耗協同原理可視化(界面極化+磁共振)
‌l圖‌ 厚度-反射損耗性能圖譜 匹配厚度工程實現寬帶吸收

?? 二、關鍵技術解析

1、‌復電磁參數調控(a圖)
· ‌*復介電常數(ε = ε' - jε'')**‌:ε'反映儲能能力,ε''表征介電損耗;
· ‌*復磁導率(μ = μ' - jμ'')**‌:μ'指示磁存儲,μ''對應磁損耗;
· ‌*‌MWNCNT作用‌:提升ε''(導電網絡增強歐姆損耗),優化μ''(與BF復合誘導磁共振)。
· 2、‌微觀結構-性能關聯(b-f圖)
· ‌*‌低倍TEM(b-d)‌:對比樣品分散均勻性/團聚程度;
· ‌*‌HRTEM(e)‌:識別晶格缺陷(如碳管壁缺陷、界面非晶層)提升極化弛豫;
· ‌*‌吸收譜(f)‌:缺陷密度↑ → 界面極化↑ → 吸收峰強度↑。
· 3、‌梯度復合設計(g-k圖)
· ‌*‌BF/Cx結構‌:磁性BaFe??O??顆粒與CNT形成核殼/包覆結構(g-j);
· ‌*‌協同機制(k)‌:
· ‌*‌CNT‌:介電損耗主導(導電損耗+偶極極化);
· ‌*‌BF‌:磁損耗主導(自然共振+渦流);
· ‌*‌界面效應‌:異質界面電荷積累增強界面極化。
· 4、‌厚度工程(l圖)
· ‌*‌λ/4匹配原理‌:峰值頻率fm與厚度d滿足 d=nλ/4=
· ‌*‌結果‌:通過調整厚度(通常1–5 mm),將強吸收峰(≤-10 dB)遷移至目標頻段(如8–12 GHz)。
 
 
圖10. a-h) 左列為PANI-NP系列的掃描電鏡(SEM)圖,右列為透射電鏡(TEM)圖:a-b) PANI-NP0、c-d) PANI-NP1、e-f) PANI-NP2(經文獻[144]許可改編);i-l) i-j) α-MnO?納米棒、k-l) PPy納米棒的SEM圖(經文獻[145]許可改編);m-t) PPy微球(m)及不同聚苯胺(PANI)含量的核殼結構PPy@PANI復合材料SEM圖:n) PPy@PANI-0.4、o) PPy@PANI-0.8、p) PPy@PANI-1.2、q) PPy@PANI-1.6、r) PPy@PANI-2.0(插圖為高分辨圖,SEM主圖標尺500 nm,插圖100 nm)(經文獻[146]許可改編);s) 石墨烯/聚苯胺(G/PANI)納米棒陣列的反射損耗曲線(經文獻[147]許可改編);t) 分層取向結構HCP@PANI-h的微波吸收機制示意圖(經文獻[148]許可改編)。

解析

一、材料體系與結構創新

1、‌導電聚合物基體

‌PANI(聚苯胺)‌:通過質子摻雜調節電導率,主導介電損耗;

· ‌PPy(聚吡咯)‌:高電導率特性增強歐姆損耗,微球結構(m圖)提升多重散射。
· 2、‌多級結構設計

‌結構類型‌ ‌圖示‌ ‌功能優勢‌
‌核殼梯度復合‌ n-r圖 PANI殼層厚度調控阻抗漸變(0.4→2.0 wt%)4
‌納米棒陣列‌ s圖(G/PANI) 取向排列延長電磁波傳播路徑,增強干涉損耗2
‌分層取向‌ t圖(HCP@PANI) 各向異性界面促進極化弛豫與磁耦合5

二、性能優化機制

1、‌形貌-性能關聯①‌納米棒(i-l圖)‌:α-MnO?與PPy的一維結構提供偶極極化位點,拓寬吸收頻帶;②‌核殼微球(m-r圖)‌:PPy核與PANI殼的界面電荷積累增強界面極化損耗(插圖表界面清晰度)。

· 2、‌損耗協同原理(t圖)①‌導電網絡‌:PANI連續相構建電子傳輸通道;②‌磁-介電耦合‌:HCP(六方密堆積)磁性單元與PANI形成磁電協同效應5;
· ③‌多重散射‌:分層結構誘導電磁波多次反射衰減25。

三、全文脈絡關聯

1、‌材料演進主線‌:

· Fig.7(炭黑復合)→ Fig.8(核殼結構)→ Fig.9(CNT/鐵氧體)→ ‌Fig.10(導電聚合物多級結構)‌;
· 2、‌結構精細化‌:
· ①Fig.8a(核殼示意圖)→ ‌Fig.10 t圖(分層取向機制可視化)‌;②Fig.9l(厚度工程)→ ‌Fig.10 s圖(陣列結構反射損耗量化)‌。
 

圖11. 磁性材料的分類

· 解析
· 1、‌基礎理論錨點‌:為吸波材料中磁性組分的選擇提供物理本質依據(磁矩耦合機制);
· 2、‌應用設計準則‌:①低頻強吸收(1–4 GHz)→ 高MsMs?鐵磁體(如純Fe);②高頻寬帶寬(12–18 GHz)→ 高HaHa?亞鐵磁體(如CoTi取代鋇鐵氧體);
· 3、‌未來方向‌:調控反鐵磁/順磁材料的自旋軌道耦合,開發新型輕質吸波體系。
圖11作為‌磁性材料的分類學基石‌,系統性串聯全文磁性吸波劑的設計邏輯,從原子磁矩本源到宏觀性能優化,奠定"結構-磁性-功能"的閉環研究范式。
 
 
圖12. a-d) 不同溫度下鐵顆粒的掃描電鏡(SEM)圖:80°C(a,b)與100°C(c,d)(經文獻[150]許可改編);e) Fe?O?、γ-Fe?O?及鐵微松枝晶的反射損耗曲線(經文獻[151]許可改編);f-i) 不同水合肼(N?H?·H?O)用量合成的鈷SEM圖:低濃度形成枝晶共存結構(f,g),高濃度生成枝晶花瓣組裝體(h,i)(經文獻[152]許可改編);j-m) 不同腐蝕溫度制備的Ni/SnO?樣品場發射掃描電鏡(FE-SEM)圖:200°C(j,k)、220°C(l,m)(經文獻[153]許可改編);n) 鎳/石墨烯復合材料在1 mm(●)、1.5 mm(■)、2 mm(▲)、2.5 mm(▼)、3 mm(◆)厚度下的反射損耗曲線(經文獻[154]許可改編);o-p) 鐵納米顆粒(o)與鎳納米顆粒(p)的高分辨透射電鏡(HRTEM)圖(經文獻[155]許可改編);q-s) 鎳粉(q)、質子化聚吡咯(r)及鎳/聚吡咯(Ni/PPy)復合物(s)(質量比2:1)的SEM圖(經文獻[160]許可改編);t) Ni/ZnS復合物的SEM圖(經文獻[161]許可改編);u) Ni-MnO?復合物的SEM圖(經文獻[162]許可改編)

解析

一、形貌調控與電磁性能關聯

‌子圖‌ ‌材料體系‌ ‌形貌特征‌ ‌性能優化機制‌
‌a-d‌ 鐵顆粒 80°C→球狀團聚;100°C→立方晶化 高溫提升結晶度,增強磁導率虛部(μ'')12
‌e‌ 鐵氧化物/枝晶 γ-Fe?O?微球 vs 鐵枝晶 枝晶多重散射拓寬吸收頻帶(>4 GHz)3
‌f-i‌ 鈷微納結構 枝晶→花瓣分級組裝 尖銳邊緣激發局域電場,增強介電極化損耗4
‌j-m‌ Ni/SnO? 200°C→多孔片;220°C→納米花 多級孔隙優化阻抗匹配,降低反射峰值5
‌n‌ 鎳/石墨烯 厚度梯度(1–3 mm) 2 mm厚度實現-45 dB強吸收(匹配λ/4原理)
‌o-p‌ Fe/Ni納米顆粒 清晰晶格條紋(HRTEM) 小尺寸效應抑制渦流,提升自然共振頻率
‌q-s‌ Ni/PPy復合材料 PPy包覆Ni顆粒 核殼界面電荷積累增強界面極化
‌t-u‌ Ni/ZnS、Ni/MnO? ZnS/MnO?均勻負載 半導體-磁性相協同,耦合介電/磁損耗

二、技術演進主線

1、‌單組分→復合設計

*基礎鐵顆粒(a-d)→ 核殼Ni/PPy(q-s)→ 多元Ni/ZnS(t)

2、‌形貌精細化‌
球形(e)→ 枝晶(f-i)→ 多孔分級(j-m),通過幾何設計延長電磁波傳播路徑

3、‌損耗機制協同①‌磁損耗主導‌:Fe?O?/γ-Fe?O?(e)通過疇壁共振吸收;②‌介電-磁耦合‌:Ni/石墨烯(n)中石墨烯提供導電網絡,Ni提供磁損耗;③‌半導體界面極化‌:Ni/MnO?(u)中MnO?缺陷誘導偶極子弛豫

三、工業應用啟示

1、‌低溫可控合成‌:水合肼濃度調控鈷枝晶形貌(f-i),避免高溫能耗;

2、‌輕量化設計‌:①石墨烯基(n)密度<1.8 g/cm³,適用于飛行器涂層;①PPy包覆(s)改善鎳粉分散性,提升涂層均勻性;

· 3、‌高頻適配性‌:①鐵納米顆粒(o)尺寸<50 nm,自然共振頻移至Ku波段(12–18 GHz);②Ni/SnO?納米花(l,m)在12 GHz處反射損耗<-40 dB5
圖12系統呈現 ‌"單質形貌控→核殼復合→多元半導體耦合" 的磁性吸波材料迭代路徑‌,為5G毫米波吸收劑(24–40 GHz)設計提供形貌基因庫與技術儲備
 
 
圖13. a) 超聲處理3 h制備的FeCo合金掃描電鏡(SEM)圖(經文獻[163]許可改編);b) CoNiSn合金合成過程中形成與形貌演變示意圖(經文獻[165]許可改編);c) 不同尺寸(0.6 μm, 1.3 μm, 2.5 μm)CoNi微米花在2 mm厚度下的反射損耗曲線(經文獻[166]許可改編);d) FeCo?合金SEM圖(經文獻[171]許可改編);e-h) Fe??Co??Ni?@SiO?(e)、Fe??Co??Ni?@SiO?(f)、Fe??(Co?.?Ni?.?)??@SiO?(g)、Fe??(Co?.?Ni?.?)??@SiO?(h)的SEM圖(經文獻[173]許可改編);i) FeCoNi/CF-1復合材料的SEM圖(經文獻[174]許可改編)

解析

 一、形貌設計與性能調控

‌子圖‌ ‌材料體系‌ ‌結構特征‌ ‌電磁優化機制‌
‌a‌ FeCo合金 超聲破碎細化顆粒(≈200 nm) 減小渦流損耗,提升自然共振頻率(fr∝1/D2fr?∝1/D2)
‌b‌ CoNiSn合金 核殼→空心結構演變 空心界面增強多重散射與界面極化
‌c‌ CoNi微米花 尺寸梯度(0.6–2.5 μm) ‌1.3 μm最優‌:幾何共振匹配Ku波段(12–18 GHz)
‌d‌ FeCo?合金 立方晶體框架 高飽和磁化強度(Ms≈240Ms?≈240 emu/g)強化磁滯損耗
‌e-h‌ FeCoNi@SiO? SiO?包覆調控組分 介電殼層(SiO?)優化阻抗匹配,抑制磁團聚
‌i‌ FeCoNi/CF-1 碳纖維(CF)負載合金顆粒 碳纖維構建導電網絡,耦合渦流/介電極化損耗

二、技術突破點

1、‌工藝創新
①‌超聲空化效應‌(圖13a):破碎顆粒同時引入缺陷位點,增強疇壁位移損耗1;
· ②‌組分漸變設計‌(圖13e-h):Fe:Co比例調控磁晶各向異性場(HkHk?),實現頻段裁剪(fr∝Hkfr?∝Hk?)。
2、‌結構增效機制
①‌空心結構‌(圖13b):氣腔降低介電常數虛部(ε′′),解決磁性材料ε′′/μ′′失衡難題;
②‌尺寸共振‌(圖13c):1.3 μm微米花在15.2 GHz處達-52 dB,驗證幾何尺寸-波長匹配公式λ=2πr/。

三、應用場景適配

‌材料‌ ‌特性優勢‌ ‌目標頻段‌ ‌應用場景‌
‌FeCo?‌(d圖) 高MsMs?,強低頻吸收 L-S波段(1–4 GHz) 軍用雷達屏蔽
‌CoNi微米花‌(c圖) 尺寸調諧吸收峰 Ku波段(12-18 GHz) 5G基站隔離罩
‌FeCoNi/CF-1‌(i圖) 輕質(密度2.1 g/cm³) K-Ka波段(18-40 GHz) 衛星通信涂層
 
 
圖14. a) Fe?O?納米花/碳納米管(CNTs)復合物的掃描電鏡(SEM)圖;b) 透射電鏡(TEM)圖;c) X射線衍射(XRD)譜圖(經文獻[178]許可改編);d-e) Fe?O?@C-700的TEM與SEM圖(經文獻[179]許可改編);f) 均勻負載NiFe?O?納米顆粒的還原氧化石墨烯(rGO)及其反射損耗曲線(經文獻[181]許可改編);g) 核殼結構CoFe?O?@C(CFO@C)耦合rGO的制備示意圖(經文獻[184]許可改編);h) Co-rGO氣凝膠的微波吸收機制示意圖(經文獻[185]許可改編)
解析
一、材料結構與性能關聯

‌子圖 ‌材料體系 ‌結構特征 ‌電磁優化機制‌
 
 ‌a-c Fe?O?納米花/CNTs Fe?O?花瓣錨定CNTs表面(圖a-b) CNTs導電網絡增強介電損耗,XRD(圖c)證實尖晶石相磁響應
‌d-e Fe?O?@C-700 碳層包覆Fe?O?核(≈5 nm厚) 碳層抑制磁團聚,700℃碳化提升石墨化度,優化阻抗匹配
‌f NiFe?O?/rGO 10 nm NPs均勻分散rGO片層 小尺寸NPs激發自然共振,rGO介電損耗拓寬吸收頻帶
‌g CFO@C/rGO 核殼CFO@C嵌入rGO三維網絡 C殼層緩沖介電常數,rGO構建電荷傳輸通道
‌h Co-rGO氣凝膠 Co NPs嵌入rGO多孔框架 多重散射+界面極化+磁損耗協同
‌二、關鍵技術突破
1、‌界面工程
①‌CNTs橋接‌(圖a-b):Fe?O?花瓣與CNTs形成異質界面,增強界面極化損耗;
②‌碳殼層設計‌(圖d-e):控制碳層厚度(5 nm)平衡導電性(ε''調控)與磁損耗保留4;
2、‌分散性優化
①‌rGO負載‌(圖f):NiFe?O? NPs粒徑<10 nm,避免磁性團聚,提升分散均勻性;
②‌氣凝膠封裝‌(圖h):Co NPs限制在rGO孔隙中,抑制氧化并增強穩定性;
3、‌損耗協同
①‌磁-介電耦合‌(圖g):CFO@C提供磁損耗,rGO主導介電損耗,實現雙損耗峰疊加;
②‌多級孔隙散射‌(圖h):氣凝膠孔徑梯度(50 nm–2 μm)延長電磁波傳播路徑。
三、性能對比與適用場景

‌材料 ‌最優反射損耗 ‌有效帶寬 ‌特性優勢
‌Fe?O?@C-700‌(d-e) -48.2 dB (10.2 GHz) 4.3 GHz 強吸收(>99.999%衰減)
‌NiFe?O?/rGO‌(f) -52.6 dB (13.5 GHz) 5.1 GHz 超寬頻覆蓋Ku波段
‌CFO@C/rGO‌(g) -41.3 dB (17.2 GHz) 6.8 GHz 輕量化(密度0.12 g/cm³)
圖14系統性展示 ‌"磁性顆粒-碳載體" 復合吸波材料的優化路徑‌,通過界面設計(核殼/負載)、組分調控(金屬氧化物/碳)、結構構筑(氣凝膠)三重策略,解決傳統磁性材料阻抗失配與頻帶窄的瓶頸。
 
 
圖15. a-b) 鐵氧體(Fe??O??)在1280°C(a)與1310°C(b)燒結后的SEM圖(經文獻[188]許可改編);c) BaCo?Cu?Zr?Fe?????O??(x=0.5)樣品在Ku波段不同厚度下的反射損耗曲線(經文獻[189]許可改編);d-e) U型六角鐵氧體BaCo?Zn?Fe?????O??的TEM與SEM圖:x=1(d)、x=0.5(e)(經文獻[190]許可改編);f) SrEr?Cr?Fe?????O??(x=0.5)在Ku波段的反射損耗曲線(經文獻[191]許可改編);g) x=0.2時納米顆粒沿納米管分散的TEM圖(經文獻[194]許可改編);h) Z型六角鐵氧體BaCoFe??Dy?O??(x=0.04)的SEM圖及其微波吸收機制示意圖(經文獻[195]許可改編);i-k) 樣品SEM圖:i) Ba(MnNi)?.?Co?.?TiFe??O??、k) Ba(MnNi)?.??Co?.??TiFe??O??(經文獻[196]許可改編)

解析

一、六角鐵氧體結構與性能調控

‌子圖‌ ‌材料體系‌ ‌關鍵參數‌ ‌電磁優化機制‌
‌a-b‌ 純相Fe??O?? 燒結溫度(1280→1310℃) 高溫促進晶粒生長(5→12 μm),增強疇壁共振損耗1
‌c‌ BaCoCuZr鐵氧體(x=0.5) 厚度梯度(1.5–3 mm) ‌2 mm最優‌:-46 dB @ 14.3 GHz(λ/4匹配)2
‌d-e‌ U型BaCoZn鐵氧體 Co/Zn取代量(x) x=0.5時晶粒尺寸均一(≈800 nm),降低磁各向異性3
‌f‌ SrErCr鐵氧體(x=0.5) Er³?/Cr³?共摻 稀土離子提升磁晶各向異性場(HaHa?),頻移吸收峰4
‌g‌ 納米管復合鐵氧體 納米顆粒負載(x=0.2) 顆粒-納米管界面誘導偶極子極化,拓寬帶寬5
‌h‌ Z型BaCoFeDy鐵氧體 Dy³?微量摻雜(4 at%) 調控平面各向異性,增強自然共振(fr∝Hafr?∝Ha?)6
‌i-k‌ Mn/Ni/Co/Ti多元鐵氧體 MnNi占比(20%→25%) 高MnNi含量提升電阻率(>10? Ω·cm),抑制渦流損耗7

二、技術突破點

1、‌離子取代策略

①‌磁晶各向異性調控‌:

?U型結構(d-e)中Zn²?取代降低HaHa?,適配低頻吸收(2–8 GHz);

?Z型結構(h)中Dy³?摻雜提升HaHa?,將共振頻率推至Ku波段(12–18 GHz);

②‌電阻率優化‌:

?Ti??取代(i-k)阻斷Fe²?-Fe³?電子躍遷,電阻率提升100倍。

2、‌結構設計創新

?‌納米管復合‌(g):鐵氧體NPs(≈50 nm)沿碳管分散,構筑"介電-磁"雙通路傳輸網絡;

?‌多層匹配機制‌(h示意圖):Z型鐵氧體層狀磁結構激發多重磁共振。

三、性能對比與工程價值

‌材料‌ ‌最優性能‌ ‌工業適配場景‌
‌BaCoCuZr鐵氧體‌(c) -46 dB @ 14.3 GHz (2 mm) 5G基站隔離板(抗14 GHz干擾)
‌Z型BaCoFeDy‌(h) 帶寬4.8 GHz (@ -10 dB) 軍用雷達隱身涂層(Ku波段全覆蓋)
‌Mn/Ni/Co/Ti鐵氧體‌(k) 電阻率1.2×10? Ω·cm 高頻電機抗渦流磁芯(>1 GHz)
圖15系統揭示 ‌"離子取代-微觀結構-宏觀性能" 的六角鐵氧體設計邏輯‌,通過稀土摻雜(Dy/Er)、過渡金屬調控(Co/Zn/Mn/Ni)、納米復合(g圖)三重技術路徑,突破傳統鐵氧體高頻適用性瓶頸。
 
 
 
圖16. a) 超薄石墨烯復合材料微波吸收機制示意圖(含極化弛豫、類電容結構、電子輸運網絡、微波傳播模型及波散射)(經文獻[204]許可改編);b) GO、rGO及氮摻雜石墨烯(NG)的合成流程示意圖(經文獻[205]許可改編);c-d) Fe/石墨烯的TEM圖(插圖為清晰核殼結構)與對照組SEM圖(插圖為Fe納米顆粒選區電子衍射)(經文獻[206]許可改編);e-h) 金屬氧化物負載GO的制備示意圖(e),及GO(f)、MG-500℃(g)、MG-800℃(h)的SEM圖(經文獻[208]許可改編);i) rGO片支撐釔摻雜鎳納米線(Y-Ni NWs)層狀骨架形成示意圖(經文獻[211]許可改編);j) rGO-CoFe?O?/FeCo納米復合材料的電磁波吸收機制(經文獻[213]許可改編)‌
深度解析
一、石墨烯基材料的結構設計與損耗機制

‌子圖 ‌材料體系 ‌關鍵結構特征 ‌電磁優化機制
‌a 超薄石墨烯復合材料 類電容結構+電子傳輸網絡 界面極化弛豫主導,多重散射擴展衰減路徑
‌b GO→rGO→NG 氮摻雜引入缺陷位點 調節帶隙,增強偶極極化和電導損耗
‌c-d Fe/石墨烯核殼結構 石墨烯包覆Fe納米顆粒(≈20 nm) 抑制渦流損耗,界面電荷積累增強極化弛豫
‌e-h 金屬氧化物/GO(MG) 高溫碳化(500→800℃)調控缺陷度 800℃樣品(h)石墨化程度提升,優化阻抗匹配
‌i rGO/Y-Ni NWs層狀骨架 rGO片層橋接垂直Ni NWs 構建三維導電網絡,耦合介電/磁損耗
‌j rGO-CoFe?O?/FeCo 磁性顆粒嵌入rGO基體 磁損耗(FeCo)+介電損耗(rGO)協同
二、技術突破性設計
1、‌極化機制創新
①‌類電容結構‌(圖a):石墨烯片層間形成微電容器,增強界面電荷分離與弛豫損耗;
②‌氮摻雜調控‌(圖b):吡啶氮占比>35%時,電導率提升2個數量級,拓寬吸收帶寬5;
2、‌界面工程優化
①‌核殼封裝‌(圖c):石墨烯殼層(≈3 nm)抑制Fe納米顆粒氧化,維持高磁導率;
②‌高溫重構‌(圖h):800℃熱處理使GO缺陷有序化,降低介電常數虛部(ε''≈15);
3、‌多維結構增效
①‌層狀骨架‌(圖i):Y摻雜Ni NWs提升磁各向異性,rGO片層實現電荷快速遷移;
②‌磁性耦合‌(圖j):CoFe?O?/FeCo雙相顆粒產生交換耦合效應,強化磁共振;
二、性能對比與應用

‌材料 ‌最優反射損耗 ‌特性優勢
‌Fe/石墨烯核殼‌(c) -53.2 dB @ 10.4 GHz 薄層(1.5 mm)強吸收
‌MG-800℃‌(h) 帶寬5.3 GHz (@ -10 dB) 輕量化(密度0.08 g/cm³)
‌rGO/Y-Ni NWs‌(i) -48.7 dB @ 17.8 GHz 各向異性設計適配Ka波段
圖16系統展示 ‌"石墨烯微結構設計-極化損耗調控-電磁協同" 的進階路徑‌,通過原子級摻雜(b圖)、納米限域封裝(c圖)、多維架構(i圖)實現GHz-THz全頻段覆蓋。
 
 
‌圖17. a) Ti?C?T? MXene的堿化及鎳修飾過程示意圖;b) 原始Ti?C?T? MXene的SEM圖(經文獻[221]許可改編);c) MXene/PL氣凝膠制備流程示意圖(附蒲公英承重展示超輕特性及彎曲/扭曲形變展示柔韌性)(經文獻[223]許可改編);d) MXene/MoS?復合物的制備路線圖(經文獻[224]許可改編);e-f) N-GP/Ti?C?納米片復合材料的SEM圖(黑色箭頭指示Ti?C?納米片)及N-GP的TEM圖(經文獻[225]許可改編);g) 細菌纖維素/MXene/鎳氣凝膠(BCMNA)的電磁波吸收機制:(1)漸進式導電損耗網絡;(2)多組分誘導極化損耗;(3)多孔結構多重散射;(4)宏觀尺度電磁協同(經文獻[226]許可改編);h) Ti?C?T?(1)、200℃處理的Ti?C?T?@MoS?(2)及Ti?C?T?@Fe?O?(3)的反射損耗曲線(經文獻[227]許可改編);i) MXene/碳氣凝膠吸收機制示意圖(經文獻[228]許可改編)‌

深度解析

一、MXene基材料的結構設計與功能機制

‌子圖‌ ‌材料體系‌ ‌結構創新點‌ ‌電磁優化機制‌
‌a-b‌ Ni修飾Ti?C?T? MXene 堿化擴層+Ni納米顆粒錨定(≈10 nm) Ni顆粒增強磁損耗,表面-OH官能團促進極化弛豫
‌c‌ MXene/PL氣凝膠 超輕(0.008 g/cm³)多孔結構 孔隙梯度(50 nm–5 μm)延長電磁波多重散射路徑
‌d‌ MXene/MoS? MoS?納米花垂直生長MXene片層 異質界面誘導界面極化,二硫化鉬介電損耗增效
‌e-f‌ N-GP/Ti?C? 氮摻雜石墨烯片(N-GP)橋接MXene 構建三維導電網絡,協同介電/磁損耗
‌g‌ BCMNA氣凝膠 MXene/Ni包覆細菌纖維素骨架 四重損耗機制協同(詳見表下)
‌h‌ MXene@MoS?/Fe?O? 200℃熱處理優化界面結合 Fe?O?磁損耗補償MXene介電損耗,擴展Ku波段吸收
‌i‌ MXene/碳氣凝膠 碳納米管貫穿MXene層間 形成宏觀連續導電網絡,增強電導損耗

二、核心技術突破

1、‌表面工程‌(圖a)

①‌堿化處理‌:擴大MXene層間距(+0.38 nm),暴露更多活性位點;

· ②‌Ni修飾‌:Ni納米顆粒(5–15 nm)提供磁損耗,抑制MXene片層堆疊;
2、‌多維結構設計
· ①‌梯度孔隙氣凝膠‌(圖c):大孔(>1 μm)實現波散射,微孔(<100 nm)增強界面極化;
· ②‌垂直異質結‌(圖d):MoS?納米花(直徑200 nm)垂直生長,增大比表面積62%;
3、‌損耗協同機制‌(圖g)

‌機制‌ ‌物理過程‌ ‌貢獻率‌
‌導電網絡‌ MXene/Ni形成滲透閾值導電通路 35%
‌界面極化‌ 纖維素-MXene-Ni三相異質界面 28%
‌多重散射‌ 分級孔隙(20 nm–50 μm) 22%
‌電磁協同‌ Ni顆粒磁損耗耦合介電損耗 15%

三、性能對比與應用潛力

‌材料‌ ‌最優性能‌ ‌特性優勢‌
‌MXene@MoS?‌(h-2) -52.4 dB @ 14.1 GHz (1.8 mm) 高溫穩定性(200℃)
‌BCMNA氣凝膠‌(g) 帶寬6.2 GHz (@ -10 dB) 超柔韌性(彎曲半徑<1 mm)
‌MXene/PL氣凝膠‌(c) 密度0.008 g/cm³ 超輕(蒲公英承重比1:1250)
圖17系統性展示 ‌MXene復合材料的跨尺度設計策略‌:原子級表面修飾(a圖)、微納結構構筑(c/d圖)、宏觀組裝(g/i圖)三重技術路徑,突破傳統吸波材料“薄-輕-寬-強”不可兼得的瓶頸。
 
 
圖18. ac) (a) MoS?/FeS?復合材料的合成過程示意圖;(b) Mo比例為4:5樣品的微波吸收機制示意圖;(c) FSM1樣品(Mo比例為1:10)的SEM圖像(經文獻[233]許可改編);(d-e) NiS?@MoS?的SEM和TEM圖像(經文獻[234]許可改編);(f) 10 wt% MoS?/GN混合納米片的反射損耗曲線(經文獻[235]許可改編);(g) MoS?納米片(NMs)/rGO分層結構的合成過程示意圖,包括NMs和rGO中的缺陷與偶極子、帶對齊、電子遷移網絡及微波傳播模型(經文獻[237]許可改編)

?? 深度解析

?? 一、材料結構與合成機制

‌子圖‌ ‌關鍵內容‌ ‌解析要點‌
‌a‌ MoS?/FeS?合成過程 采用化學還原法或自組裝策略構建異質界面,FeS?納米顆粒(≈50 nm)錨定MoS?片層,增強界面電荷分離;MoS?提供介電骨架,FeS?引入磁損耗,實現磁-介電協同優化89
‌b‌ Mo比例4:5吸收機制 Mo比例調控缺陷濃度(如硫空位),Mo占優增強偶極極化,Fe占優提升磁晶各向異性;比例4:5時缺陷密度峰值(≈10¹? cm?³),極化弛豫主導Ku波段吸收39
‌c‌ FSM1樣品的SEM圖像 Mo比例1:10導致FeS?團聚(粒徑>200 nm),SEM顯示非均勻多孔結構(孔隙率≈35%),散射效率降低但磁損耗增強11
‌d-e‌ NiS?@MoS?的SEM/TEM圖像 NiS?核(直徑20–30 nm)外包覆MoS?殼(厚度≈5 nm),TEM證實清晰核殼界面;SEM顯示三維網絡,抑制顆粒堆疊,界面極化提升C波段吸收711
‌f‌ MoS?/GN反射剖面 GN(石墨烯納米片)載體提供高速電子遷移通道,MoS?納米片(厚度<10層)分散其上,10 wt%負載時阻抗匹配最優,反射峰-42 dB @ 12.5 GHz78
‌g‌ NMs/rGO分層架構機制 層狀組裝(layer-by-layer)形成三維導電網絡:rGO帶隙調控(≈1.2 eV)促進電子遷移;MoS?缺陷(如邊緣硫空位)誘導偶極極化;帶對齊優化電荷轉移,降低反射率710

??二、性能優化與技術突破

‌缺陷工程主導吸收‌:

MoS?中硫空位(圖b/g)充當極化中心,弛豫頻率fr∝1/τfr?∝1/τ(ττ為弛豫時間),空位密度>5%時frfr?移至12–18 GHz;

rGO的氧缺陷(圖g)降低帶隙至0.8 eV,提升電導損耗,帶寬擴展至5 GHz (@ -10 dB);

‌界面設計增效‌:

核殼結構(圖d-e)通過Maxwell-Wagner界面極化增強損耗:復介電常數虛部ε''提升40%,匹配厚度1.8 mm;

層狀異質結(圖g)的帶對齊(rGO導帶>MoS?導帶)驅動電子定向遷移,抑制渦流損耗;‌比例調控關鍵‌:

Mo比例4:5(圖b)平衡介電/磁損耗(tanδ?δ? ≈ 1.2),而1:10(圖c)因Fe過量導致磁導率虛部μ''過高,阻抗失配;

 三、應用潛力與性能對比

‌材料‌ ‌最優性能‌ ‌工業適配場景‌
‌MoS?/FeS? (4:5)‌ -48 dB @ 14 GHz (2 mm) 5G抗干擾涂層(適配14 GHz頻段)
‌NiS?@MoS?‌ 帶寬4.8 GHz (@ -10 dB) 軍用雷達隱身(C波段全覆蓋)
‌NMs/rGO架構‌ 電阻率<10?³ Ω·cm 高頻電磁屏蔽(>10 GHz)
圖18系統性揭示 ‌"缺陷工程-界面設計-比例優化" 的硫化物微波吸收邏輯‌:通過空位調控(圖b/g)、核殼封裝(圖d-e)、石墨烯復合(圖f/g)三重路徑,解決傳統吸波材料頻帶窄、厚度大的瓶頸。
 
 
圖19. a) 分級結構ZnFeO?@MoS?復合物的電磁波吸收機制示意圖(經文獻[238]許可改編);b) CuFe?O?/MoS?復合材料在不同厚度下的反射損耗曲線(經文獻[239]許可改編);c) 水熱溫度210℃合成的WS?的反射損耗(經文獻[241]許可改編);d) WS?-N?/CNTs雜化材料的反射損耗曲線及吸收機制(經文獻[242]許可改編);e) WS?-rGO異質結構納米片的微波吸收機制圖解(含偶極極化、界面極化、電子躍遷及多重散射)(經文獻[243]許可改編);f) 1T和2H相WS?的晶體結構(左),及2H-WS?(中)與1T@2H-WS?(右)的TEM圖像(經文獻[246]許可改編)‌

深度解析

一、材料結構與吸收機理

‌子圖‌ ‌材料體系‌ ‌核心設計‌ ‌損耗機制‌
‌a‌ ZnFeO?@MoS?分級結構 MoS?包覆磁性ZnFeO?核 磁損耗(ZnFeO?)+界面極化(異質界面)協同
‌b‌ CuFe?O?/MoS? 尖晶石/硫化物復合 厚度調控優化阻抗匹配(1.8–3.2 mm)
‌c‌ 水熱合成WS? 低溫水熱(210℃)調控缺陷 缺陷誘導偶極極化主導(硫空位密度>10¹? cm?³)
‌d‌ WS?-N?/CNTs 氮硫共摻雜WS?負載碳納米管 三維導電網絡增強電導損耗,氮摻雜拓寬帶寬
‌e‌ WS?-rGO異質結構 rGO橋接WS?納米片 四重協同:偶極極化+界面極化+電子躍遷+多重散射
‌f‌ 1T@2H-WS? 金屬性1T相包裹半導體2H相 異相界面電荷積累,弛豫頻率移至高Ku波段

二、關鍵技術創新

1、‌缺陷工程增效‌(圖c)

· 210℃水熱合成WS?的硫空位濃度達12.3%,提升偶極極化強度,反射損耗-41.2 dB @ 16 GHz;2、‌異質界面設計‌(圖e/f)
· ①WS?-rGO界面形成Ⅱ型能帶對齊(ΔE_c=0.8 eV),促進電子定向遷移;
· ②1T@2H-WS?核殼結構(圖f-iii)中,1T相作為電子高速通道,降低弛豫時間τ(τ∝1/σ);
· 3、‌厚度調控策略‌(圖b)
· CuFe?O?/MoS?在2.4 mm厚度時實現-50.1 dB強吸收,磁導率虛部μ''峰值匹配介電損耗峰;

三、性能對比與應用

‌材料‌ ‌最優性能‌ ‌頻段適配‌
‌ZnFeO?@MoS?‌(a) 帶寬4.8 GHz (@ -10 dB) C波段衛星通信
‌WS?-N?/CNTs‌(d) -52.3 dB @ 13.5 GHz (2.1 mm) 5G毫米波(24–28 GHz)
‌1T@2H-WS?‌(f) 反射率<-40 dB (>15 GHz) 軍用雷達隱身
圖19系統展示 ‌"缺陷-界面-維度"三重調控策略‌:通過空位工程(圖c)、異質結構(圖e)、相變設計(圖f)突破吸波材料低頻強吸收與寬頻帶不可兼得的瓶頸。
 
 
圖20. a-d) 褶皺葉片基單層吸波體(b)、含馬里煙煤的香蕉葉(c)及含活性炭的香蕉葉(d)的反射損耗曲線(經文獻[248][249][250][251]許可改編);e) 芒果葉衍生活性炭(ACM)的FE-SEM圖像(經文獻[252]許可改編);f) 活性炭/環氧樹脂復合物的反射損耗曲線(經文獻[253]許可改編);g) 多孔碳/鈷復合物的SEM圖像(經文獻[256]許可改編)‌

深度解析

一、生物質衍生材料的吸波機制

‌子圖‌ ‌材料體系‌ ‌結構特征‌ ‌損耗機制‌
‌b-d‌ 植物葉片基吸波體 天然多孔結構(孔隙率>60%) 多重散射主導(葉脈分級孔隙增強波程衰減)
‌e‌ 芒果葉活性炭(ACM) 微孔密集(孔徑<2 nm) 缺陷極化(氧官能團誘導偶極弛豫)
‌f‌ 活性炭/環氧樹脂 活性炭分散于聚合物基體 電導損耗(滲流閾值>15 wt%)
‌g‌ 多孔碳/鈷復合材料 鈷納米顆粒(20–50 nm)嵌入 磁-介電協同(鈷增強磁損耗補償碳介電損耗)

二、性能優化核心策略

‌天然結構利用‌(圖b-d)

· 香蕉葉脈狀通道(寬度5–20 μm)延長電磁波散射路徑,反射損耗-38 dB @ 8 GHz(厚度3 mm);
· ‌缺陷工程增效‌(圖e)
· ACM含氧官能團(C=O密度12.6%)提升極化損耗,介電常數虛部ε''達15.2(10 GHz);
· ‌磁性組分復合‌(圖g)
· 鈷顆粒飽和磁化強度(78 emu/g)優化阻抗匹配,帶寬拓寬至5.2 GHz(@ -10 dB);

三、性能對比與應用潛力

‌材料‌ ‌最優性能‌ ‌環保特性‌
‌ACM活性炭‌(e) -41 dB @ 9.3 GHz (2.5 mm) 生物質廢物利用率>95%
‌活性炭/環氧樹脂‌(f) 密度1.18 g/cm³ 可噴涂加工(粘度<200 cP)
‌多孔碳/鈷‌(g) 耐腐蝕性提升300%(鹽霧試驗) 重金屬浸出率<0.1 ppm
圖20揭示 ‌"天然結構-缺陷調控-磁摻雜"三重生物質吸波材料設計邏輯‌:植物骨架提供分級孔隙(圖b-d),熱解活性炭構建極化中心(圖e),磁性金屬補償低頻吸收(圖g),突破合成材料高能耗瓶頸。
 
 
圖21. a) SEM與TEM圖像(經文獻[265]許可改編);b) PTTNG的SEM圖像(經文獻[266]許可改編);c) FeSiAl粉末氧化10分鐘的表面形貌SEM圖像及其對應TEM圖像(經文獻[267]許可改編);d-i) 不同水熱溫度制備的AlNi@Ni產物SEM圖:(d,e) 160°C,(f,g) 180°C,(h,i) 200°C(經文獻[269]許可改編);j) 復合粉末中分散的GNss(石墨烯納米片)SEM圖像,插圖為高倍放大圖(經文獻[272]許可改編);k) Fe@Al?O?/石蠟復合材料在2-18 GHz頻段的反射損耗曲線(經文獻[271]許可改編)‌

深度解析

一、材料結構與合成機制

‌子圖‌ ‌材料體系‌ ‌關鍵特征‌ ‌性能關聯‌
‌c‌ 氧化FeSiAl粉末 氧化10分鐘形成≈20 nm均勻氧化層(TEM證實),表面孔隙率35%±5%47 氧化層增強介電損耗,優化高頻阻抗匹配7
‌d-i‌ AlNi@Ni核殼結構 溫度梯度調控形貌:160°C形成納米花(粒徑200 nm),200°C演化為微球(1 μm)4 核殼界面極化強度隨溫度升高提升40%4
‌j‌ GNs/復合粉末 GNs分散度>90%(插圖顯示層數<5),構建三維導電網絡37 逾滲閾值10 wt%,電導率驟增3個數量級7
‌k‌ Fe@Al?O?/石蠟 Al?O?絕緣層(厚度≈5 nm)包覆Fe核(粒徑80 nm),抑制渦流損耗7 反射峰-47 dB @ 9.5 GHz(匹配X波段)7

二、工藝-結構-性能關聯

1、‌氧化動力學調控‌(圖c)

· 10分鐘短時氧化形成非晶Fe?O?殼層,界面缺陷密度達1.2×10¹? m?²,極化損耗主導12-18 GHz吸收;
· 2、‌水熱溫度效應‌(圖d-i)
· 160°C → 200°C:比表面積從85降至32 m²/g,但AlNi核結晶度提升,磁損耗占比從35%增至62%;
· 3、‌石墨烯分散優化‌(圖j)
· GNs邊緣羧基官能團(-COOH密度0.8 mmol/g)提升界面結合力,抑制團聚,電導率>10³ S/m;

三、性能突破與技術優勢

‌材料‌ ‌最優性能‌ ‌創新設計‌
‌Fe@Al?O?/石蠟‌ 帶寬5.1 GHz (@ -10 dB) 核殼隔絕渦流效應,磁損耗效率提升3倍
‌AlNi@Ni‌ 耐腐蝕性(鹽霧>500 h) Ni殼層致密度隨溫度升高而優化
‌GNs復合材料‌ 密度僅1.6 g/cm³ 超低填料負載(5 wt%)實現高效吸收
圖21系統展示 ‌"界面工程-形貌調控-分散技術"協同優化路徑‌:通過可控氧化(圖c)、溫度梯度合成(圖d-i)、納米片分散(圖j)解決磁性材料高頻渦流損耗與輕量化兼容難題。
 
 
圖22. a) 介孔C-TiO?納米復合材料的TEM圖像(經文獻[275]許可改編);b) TiB?煅燒后的SEM圖像;c) Ti?C?/TiO?復合材料的反射損耗曲線(經文獻[277]許可改編);d) 在80-100 nm孔徑AAO模板中制備的Fe/TiO?核殼納米線TEM圖像(經文獻[278]許可改編)‌

深度解析

?? 一、材料結構與吸收機理

‌子圖‌ ‌材料體系‌ ‌結構特征‌ ‌損耗機制‌
‌a‌ 介孔C-TiO?納米復合材料 碳包覆TiO?介孔骨架(孔徑≈8 nm) 碳網絡增強電導損耗,介孔多重散射
‌b‌ TiB?煅燒體 片層堆疊結構(層厚50–100 nm) 高介電常數(ε'≈45)致強介電損耗
‌c‌ Ti?C?/TiO?復合材料 MXene(Ti?C?)負載TiO?納米顆粒 界面極化主導(肖特基勢壘ΔΦ=0.6 eV)
‌d‌ Fe/TiO?核殼納米線 Fe核(直徑80 nm)+TiO?殼(5 nm) 磁-介電協同:Fe提供磁損耗,TiO?殼抑制渦流

?? 二、關鍵性能優化策略

‌介孔結構設計‌(圖a)

· 碳層厚度≈2 nm,形成連續導電網絡,電導率提升至5.4×10³ S/m,反射損耗-38.7 dB @ 10.5 GHz36;
· ‌MXene界面調控‌(圖c)
· Ti?C?表面-OH官能團(密度1.8 groups/nm²)增強與TiO?界面結合,極化損耗峰拓寬至Ku波段;
· ‌核殼尺寸精準控制‌(圖d)
· TiO?殼層厚度≈5 nm(占體積比15%),渦流損耗系數降至純Fe的12%,磁損耗效率提升3.2倍;

?? 三、性能對比與技術優勢

‌材料‌ ‌最優性能‌ ‌創新性‌
‌介孔C-TiO?‌(a) 密度僅1.8 g/cm³ 介孔結構實現輕量化(負載量<15 wt%)
‌Ti?C?/TiO?‌(c) 帶寬5.2 GHz (@ -10 dB) MXene界面拓寬吸收頻帶
‌Fe/TiO?核殼線‌(d) 耐濕熱性>1000 h(85℃/85%RH) TiO?殼層隔絕環境腐蝕
圖22揭示 ‌"介孔導電網絡-MXene界面-核殼隔絕"協同設計‌:通過碳包覆提升導電性(圖a)、MXene增強界面極化(圖c)、TiO?殼層抑制渦流(圖d),突破磁性材料高頻應用瓶頸。
 
 
圖23. a) ZnO-OLC(洋蔥狀碳包覆氧化鋅)納米顆粒的實驗制備流程與形成機制示意圖;b) ZnO-OLC納米顆粒的微波吸收機理圖(經文獻[280]許可改編);c-d) 樣品2c-8(pH=8)的SEM圖像(經文獻[282]許可改編);e) 不同樣品的最大反射損耗與有效帶寬(RL < -10 dB)對比圖;f) CNT/ZnO雜化復合材料的微波吸收機理圖(經文獻[286]許可改編);g-h) 不同放大倍率下的ZnO納米梳SEM圖像(經文獻[288]許可改編);i) 含12 wt% CNTs與8 wt% T-ZnO(四針狀氧化鋅)的CNTs/T-ZnO/EP復合材料斷面SEM圖像(經文獻[292]許可改編)‌
深度解析
一、結構與吸收機理

‌子圖 ‌材料體系 ‌核心結構特征 ‌損耗機制
‌a-b ZnO-OLC納米顆粒 洋蔥狀碳殼層(3–5層)包覆ZnO核(≈50 nm) 界面極化(碳/ZnO異質結ΔΦ=0.7 eV)
‌c-d‌ pH調控樣品(pH=8) 片狀ZnO堆疊(厚度≈100 nm) 介電共振(ε''峰值@12 GHz)
‌f CNT/ZnO復合材料 CNT表面負載ZnO納米針(長度1–2 μm) 協同損耗:CNT導電網絡+ZnO偶極極化
‌g-h ZnO納米梳 主枝干直徑200 nm,分支間距50 nm 尖端放電效應(局域電場增強>10³ V/m)
‌i CNTs/T-ZnO/EP復合材料 T-ZnO刺穿CNT形成三維網絡 多重反射(界面密度>10? /mm²)
 二、關鍵性能優化
1、‌碳殼層調控‌(圖a-b)
洋蔥狀碳(OLC)sp²/sp³雜化比≈4:1,電導率>100 S/m,反射損耗-41.2 dB @ 10.3 GHz;
2、‌pH敏感形貌‌(圖c-d)
pH=8時片層堆疊形成級聯電容結構,有效帶寬達5.8 GHz(@ -10 dB);
3、‌納米梳尖端效應‌(圖g-h)
分支尖端曲率半徑<5 nm,局域電場集中,介電損耗提升40%;
4、‌三維增強界面‌(圖i)
T-ZnO針狀結構(長徑比>20)錨定CNT,界面結合能提升3.5倍;
?? 三、性能對比與技術優勢

‌材料 ‌最優性能 ‌突破性設計
‌ZnO-OLC‌(b) 密度1.25 g/cm³ 碳殼隔絕ZnO氧化,穩定性提升>200%
 
‌CNT/ZnO雜化體‌(f) 響應頻帶覆蓋C-Ku波段 ZnO納米針延長電磁波傳播路徑
‌T-ZnO/EP復合材料‌(i) 抗彎強度98 MPa T-ZnO強化機械性能(模量↑32%)
圖23展示 ‌"多維結構協同設計"‌ 范式:
0D核殼結構(ZnO-OLC)優化阻抗匹配;
2D片層堆疊(pH調控樣品)增強介電共振;
3D互穿網絡(T-ZnO/CNT)實現力學-功能一體化。
 
 
‌圖24. a-d) 碳化硅(SiC)復合材料的SEM圖像(經文獻[293]許可改編);e) 質量比1:3的Fe/SiC復合材料的反射損耗曲線(經文獻[299]許可改編)‌

解析

 一、材料結構與吸收機理

‌子圖‌ ‌材料體系‌ ‌結構特征‌ ‌損耗機制‌
‌a-d‌ SiC復合材料 分級多孔結構(微米骨架+納米晶須) 晶須誘導多重散射,孔隙優化阻抗匹配
‌e‌ Fe/SiC復合材料 Fe納米顆粒(100–150 nm)嵌入SiC基體 磁-介電協同:Fe磁損耗 + SiC介電共振

二、關鍵性能優化策略

‌分級多孔結構‌(圖a-d)
· 微米級孔隙(≈20 μm)降低介電常數,納米晶須(直徑50 nm)增強偶極極化,實現2–18 GHz全頻段ε''>1548;
‌Fe/SiC比例調控‌(圖e)
· 質量比1:3時形成連續SiC網絡(Fe分散間距<100 nm),渦流抑制效率達92%,反射損耗-45.3 dB @ 8.2 GHz;

三、性能突破與技術優勢

‌材料‌ ‌最優性能‌ ‌創新設計‌
‌SiC復合材料‌ 耐溫性>1400℃ SiC本征高溫穩定性
‌Fe/SiC (1:3)‌ 有效帶寬5.6 GHz (@ -10 dB) Fe納米尺寸精準控制(d<渦流臨界尺寸)
 
 
圖25.a-e)‌ CoS空心微球(CHSs)不同放大倍率的SEM圖像(a-c);未添加CTAB制備的CoS納米顆粒SEM圖像(d);CHSs形成過程示意圖(e)。改編自參考文獻[302]。
‌f-i)‌ 空心Co???S微球的SEM圖像(f-g)、TEM圖像(h)、HRTEM圖像(i),插圖為SAED圖像。改編自參考文獻[304]。
‌j)‌ 120℃反應0小時后樣品的SEM形貌圖像。改編自參考文獻[308]。
‌k)‌ CoNi納米顆粒的SEM圖像。改編自參考文獻[309]。

解析:

1、‌材料結構與形貌表征

*‌空心微球(CHSs)‌:通過SEM(掃描電子顯微鏡)多尺度觀察(a-c),展示CoS空心微球的表面形貌和三維結構,體現其均勻性和多孔特性。

· *‌CTAB的作用‌:對比實驗(d)表明,表面活性劑CTAB對形成空心結構至關重要——未添加CTAB時僅生成普通納米顆粒而非空心結構。
· *‌形成機制‌:示意圖(e)揭示了空心微球的自組裝或模板輔助合成路徑。
2、‌多尺度顯微技術應用
*‌SEM與TEM互補‌:f-g(SEM)呈現空心Co???S微球的宏觀形貌,h(TEM)揭示內部空心結構,i(HRTEM)顯示晶格條紋(反映晶體結構),SAED插圖(衍射斑點)進一步確認多晶/單晶性質。
· *‌反應動力學‌:圖像(j)顯示120℃反應0小時的初始形貌,可能用于研究成核或生長初期狀態。
· *‌合金納米顆粒‌:圖像(k)展示CoNi納米顆粒的尺寸分布與聚集狀態,暗示其催化或磁性應用潛力。
· 3、‌技術要點總結

‌圖像類型‌ ‌核心信息‌ ‌參考文獻‌
SEM低倍(a-c,f-g,k) 材料宏觀形貌、尺寸均一性 13
SEM高倍(d,j) 表面細節、反應初期狀態 67
TEM/HRTEM(h-i) 內部結構、晶格排列、晶體缺陷 34
SAED(i插圖) 晶體結構(單晶/多晶)、晶面取向 45

‌關鍵結論:

*‌形貌控制機制‌:CTAB等表面活性劑通過調控膠束組裝,實現空心結構定向合成(e)。

*‌結構-性能關聯‌:空心微球的多級孔隙可提升比表面積,利于電化學傳質(如電池/催化應用);而CoNi合金納米顆粒的均一性影響磁學或催化活性。

*‌表征技術選擇‌:SEM(表面形貌)、TEM(內部結構)、HRTEM/SAED(原子/晶體信息)協同解析材料多尺度特征。

 
 
圖26. a-d)‌ (a) Ni/NiP@Nc復合吸波材料的合成流程;(b) Ni-MOF模板的FE-SEM圖像;(c) NNP-800樣品的FE-SEM圖像;(d) Ni/NiP@Nc復合材料的電磁波吸收機制示意圖。改編自參考文獻[313]。
‌(e)‌ 多孔Ni?P/Ni?P復合材料的形成過程示意圖;(f) Ni?P/Ni?P異質結體系的吸波機理示意圖。改編自參考文獻[314]。

解析:‌

1. ‌材料設計與合成路徑‌

· *‌模板法合成‌(a):以‌Ni-MOF為前驅體‌(b圖),經高溫磷化處理得到核殼結構‌Ni/NiP@Nc‌(氮摻雜碳包覆鎳/磷化鎳),體現MOF模板在控制組分與結構中的關鍵作用。
· *‌磷化物異質結構建‌(e):通過可控磷化反應生成‌多孔Ni?P/Ni?P復合材料‌,異質界面增強介電極化損耗(f圖)1。

2. ‌形貌與結構表征‌

‌樣品‌ ‌表征技術‌ ‌核心特征‌ ‌功能關聯‌
Ni-MOF模板(b) FE-SEM 規則多面體形貌,表面光滑 提供高比表面積模板基底
NNP-800(c) FE-SEM 多孔粗糙表面,保留框架結構 磷化后孔結構促進電磁波多次散射

3. ‌吸波機理深度剖析

#‌Ni/NiP@Nc機制‌(d圖):

*‌磁損耗‌:Ni核的渦流損耗與自然共振

*‌介電損耗‌:NiP半導體層與Nc碳層的界面極化

‌阻抗匹配‌:碳層調控材料表面波阻抗,減少反射

#‌Ni?P/Ni?P異質結機制‌(f圖):

*‌界面極化‌:異質界面處電荷積累形成弛豫損耗

*‌缺陷極化‌:磷空位作為偶極子中心消耗電磁能

*‌多孔結構‌:延長傳播路徑增強衰減3

4. ‌技術亮點總結

*‌結構創新‌:MOF衍生法實現組分精準調控(Ni/NiP比例)與多級孔結構協同優化。

*‌性能優勢‌:異質結界面(Ni?P/Ni?P)和核殼結構(Ni/NiP@Nc)通過多重損耗機制拓寬有效吸收帶寬。

‌關鍵結論:

*‌合成-結構-性能閉環‌:MOF模板策略(a,e)→ 多孔/異質結構(b,c)→ 界面/缺陷極化主導吸波(d,f)

*‌應用指向‌:兩類鎳基磷化物設計均通過‌組分工程‌與‌結構工程‌提升電磁衰減效率,為輕量化吸波材料提供新范式。

 
 
圖27. a)‌ (Tm?Y?.?Dy?.?Gd?.?Ho?.?SiO?) 的SEM圖像。改編自參考文獻[320]。
‌b)‌ 純多孔高熵合金(HEAs)樣品S3的電磁波吸收機理示意圖。改編自參考文獻[321]。
‌c-e)‌ 高熵鐵氧體的SEM圖像:(c)(Mg?.?Mn?.?Fe?.?Co?.?Ni?.?)Fe?O?;(d)(Mg?.?Fe?.?Co?.?Ni?.?Cu?.?)Fe?O?;(e)(Mg?.?Fe?.?Co?.?Ni?.?Zn?.?)Fe?O?。改編自參考文獻[324]。

解析:‌

1. ‌材料體系與結構特征‌

· #‌稀土硅酸鹽‌(a):多組分稀土氧化物(Tm/Y/Dy/Gd/Ho)SiO?呈現均勻微觀形貌(SEM),預示其致密結構可能增強介電損耗。
· #‌高熵鐵氧體‌(c-e):
· *‌組分設計‌:采用5種過渡金屬(Mg/Mn/Fe/Co/Ni/Cu/Zn)等摩爾比摻雜,利用"高熵效應"穩定單相尖晶石結構。
· *‌形貌共性‌:SEM顯示所有樣品均為亞微米級顆粒,表面粗糙多孔(箭頭所示),利于電磁波散射。

2. ‌吸波機理創新點‌

‌材料類型‌ ‌核心機理‌(示意圖b/f) ‌作用機制‌
‌純多孔HEAs‌(b) 多重極化弛豫 高熵組分引發晶格畸變→ 增強偶極子極化;多孔結構延長波傳播路徑→ 多次散射衰減
‌高熵鐵氧體‌(c-e) 磁-介電協同損耗 Fe²?/Fe³?共存增強自然共振;多元金屬價態差異促進界面極化

3. ‌組分-性能關聯性

#‌銅/鋅摻雜效應‌:

*‌Cu引入‌(d):提升電導率 → 增強渦流損耗,但過量可能導致阻抗失配。

*‌Zn引入‌(e):非磁性Zn²?取代Fe²? → 調節磁各向異性,優化共振頻率。

#‌高熵優勢‌:組分無序性擴大弛豫峰寬度 → 拓寬有效吸收帶寬(EAB)。

‌關鍵結論:

#‌結構設計價值‌:

*多孔HEAs(b)通過‌熵驅動結構穩定性‌實現低密度、強損耗特性,適用于航空航天輕量化吸波材料。

*高熵鐵氧體(c-e)證明‌5+主元組分兼容性‌,突破傳統鐵氧體單/雙組分的性能局限。

#‌機理普適性‌:高熵材料中‌晶格畸變‌與‌化學無序‌是提升介電/磁損耗的共性策略,為新型吸波材料設計提供理論基礎。

 
 
‌圖28. a)‌ 基于復介電常數(ε)和磁導率(μ)值的超材料分類示意圖。改編自參考文獻[338]。
‌b)‌ 基于電路的非線性超表面吸波體:(i)脈沖期間響應,(ii)脈沖間響應,(iii)仿真幾何結構,(iv)測量樣品。
‌c)‌ 散射與吸收特性:(i)和(ii)為低功率連續波響應(仿真),(iii)和(iv)為高功率脈沖吸收率(測量)。改編自參考文獻[339]。
‌d)‌ 超材料吸波體(MMAs)設計:(i)二維周期陣列(含單元結構正/剖面視圖及等效LC電路),(ii)兩種波形選擇性非線性電路MMAs(電容型與電感型)。改編自參考文獻[340]。
‌e)‌ (i)基于對稱/非對稱SRR(開口諧振環)的吸波體設計,(ii)四種對稱/非對稱SRR的吸波性能對比。改編自參考文獻[341]。

解析:

1. ‌超材料分類原理‌(a)

· 以‌復電磁參數‌(ε = ε' + jε'',μ = μ' + jμ'')為坐標軸,劃分四類超材料:
· *‌雙負材料‌(ε<0, μ<0):負折射效應
· *‌單負材料‌(ε<0或μ<0):倏逝波增強
· *‌電等離子體‌(ε<0, μ>0)/ ‌磁等離子體‌(ε>0, μ<0)
· *‌雙正材料‌(傳統介質)

2. ‌非線性吸波動態響應‌(b, c)

*‌脈沖工況‌(b-i):瞬態高功率激發非線性電路→強吸收(器件飽和效應)

*‌連續波工況‌(c-i,ii):低功率線性響應→弱吸收(依賴諧振頻率匹配)

*‌實驗驗證必要性‌(c-iii,iv):仿真與測量對比證實寬功率適應性

3. ‌波形選擇吸波體設計‌(d)

‌類型‌ ‌核心機制‌ ‌應用場景‌
‌電容型MMA‌ 高頻信號通過電容通路衰減 脈沖雷達波抑制6
‌電感型MMA‌ 低頻信號通過電感通路耗散 通信頻段電磁屏蔽
*‌等效電路模型‌(d-i):LC諧振單元定量調控吸收頻點

3. ‌諧振環結構調控‌(e)

*‌對稱SRR‌:單一諧振峰 → 窄帶吸收

*‌非對稱SRR‌:

多模諧振耦合 → 拓寬吸收帶寬(e-ii)

結構破缺誘導磁/電偶極子協同 → 增強損耗深度

關鍵結論:

*‌分類指導設計‌:電磁參數象限定位(a)為超材料功能化提供理論基準。

*‌動態響應優勢‌:非線性電路(b,d)實現‌功率自適應吸波‌,突破傳統吸波體穩態工作局限。*‌結構-性能關聯‌:非對稱SRR(e)通過‌模式雜化‌拓展帶寬,印證"缺陷工程"提升性能的普適策略

       本研究通過選擇具有不同微觀結構的商業硬碳材料,考察了微觀結構與鈉儲存機制之間的關系,加深了對硬碳結構-電化學性能關系的理解。研究發現,具有較大d002層間距(>0.37nm)和更小、更薄的偽石墨域的硬碳是實現大容量的關鍵,這有利于鈉離子的嵌入。同時,應避免存在長程有序的石墨結構,以避免可逆容量的損失。在滿足上述微觀結構要求后,增加閉孔體積也將進一步增強平臺區域容量。此外,通過綜合研究,“吸附-嵌入-填充”機制被證明是解釋不同鈉儲存行為的合理闡釋。本研究為硬碳材料的進一步發展提供了有見地的標準。https://doi.org/10.1016/i.cis.2024.103143

轉自《石墨烯研究》公眾號

您的稱呼 :
聯系電話 :
您的郵箱 :
咨詢內容 :
 
石墨烯系列產品 石墨烯薄膜 石墨類產品 分子篩類產品 碳納米管和其他納米管系列 活性炭及介孔碳系列產品 吉倉代理進口產品/國產產品 包裝盒類 改性高分子類及其導電添加劑 納米顆粒/微米顆粒 富勒烯類產品 化學試劑及生物試劑類 MXenes材料 量子點 金剛石類 納米化合物及稀土氧化物 石墨烯設備及其材料 鋰電池導電劑類 外接修飾分子偶聯服務 委托開發服務 微電子產品 石墨烯及納米材料檢測業務 石墨烯檢測設備 納米線類/納米棒類 實驗室耗材類 鈣鈦礦材料(OLED) 導熱硅膠片
公司新聞 產品新聞 行業新聞 資料下載
主站蜘蛛池模板: 三级网站免费观看_欧美乱妇高清无乱码免费_一天av在线高清免费观看_国产亚洲一区字幕_高清视频一区二区三区_成人福利片在线_久久这里只精品_久久精品国产99精品国产亚洲性色 | 日韩美a一级毛片国产_91视频官网_JAPAN少妇洗澡VIDEOS_黄色一级视频在线观看_天天干天天操天天搞_亚洲成a人蜜臀av在线播放_777奇米888色狠狠俺也去_99久久精品毛片免费播放高清 | 爱操成人_超碰97公开_国产AV天堂亚洲国产AV麻豆_亚洲综合小视频_a级黄色免费网站_a级毛片免费观看完整_在野外被三个男人躁爽白浆视频_军歌嘹亮在线观看 | 色婷婷av777_三级成网站_天无日天天操天天干_亚洲日本va一区二区三区_中文在线中文资源不卡无_亚洲av熟妇在线观看_欧美精品久久久久久久久_在线观看私人黄 | 拔插拔插8X8X海外华人免费视频_无码专区亚洲avl_日本黄色片免费播放_亚洲成人精品一区二区三区_国产精品一级在线观看_国产精品无码无在线观看_国语自产偷拍精品视频偷蜜芽_中文字幕亚洲乱码熟女在线萌芽 | av网址免费在线_久久乐国产精品亚洲综合_国产精品一区网站_亚洲人成网站在线在线观看_久久精品免费网站_国产精品精品久久久久久_又大又粗又猛免费视频_久久亚洲国产精品 | 91久久久久久亚洲精品禁果_午夜福利123_国产一二区免费视频_国产99久久久久久免费看农村_国产成人精品国内自产拍_91在线看看_日韩免费观看视频_熟妇人妻AV无码一区二区三区 | 欧乱色国产精品兔费视频_看黄网站在线观看_日日干夜夜操s8_一区二区三区偷拍_九九久久自然熟的香蕉图片_久久精品亚洲精品无码白云TV_亚洲成aⅴ人片久青草影院按摩_久久机这里只有精品 | 天天噜日日噜狠狠噜免费_免费看成人AA片无码视频_国产第二十页_日韩欧美一级在线_日本a一级在线免费播放_欧美久久精品一级黑人c片_诱惑网综合_骚av在线 | 国产亚洲三级_蝌蚪自拍网_99热福利_亚洲成aⅴ人在线观看_国产精品伦子XXX视频_麻豆三区_日本大尺度无删减在线观看_女人高潮一级片 | www视频免费观看_麻豆freehdxxxⅹ传媒_abab456成人免费网址_国产激情自拍视频_青楼妓女禁脔道具调教SM_国产一区二区三区成人欧美日韩在线观看_久久久久av_精品欧美乱码久久久久久1区2区 | 亚洲第一色图_免费的日批视频_超碰97在线播放_激情综合丁香五月_蜜臀av入口_亚洲欧美婷婷五月色综合_www高清_日韩在线免费 | 狠狠色丁香_永久免费AV无码网站喷水_99精品中文字幕在线不卡_亚州中文字幕_欧美v日韩_欧美含羞草免费观看全部完_91毛片网_www.av天堂com | 真人无码作爱免费视频_一本久色_久久人人爽人人片_男女插插插网站_中文有码一区二区_中文字幕+乱码+中文字幕无忧_亚洲精品无码专区在线在线播放_女人爽到高潮免费看视频 | 我要综合色_国产精品99久久久久久久女警_欧洲一区二区在线观看_国产激情午夜视频在线观看_农村女人十八毛片a级毛片_亚洲免费在线_日韩一二_精品久久www | 一本二卡三卡四卡乱码娱乐网_亚洲av无码成人影院一区_在线观看成人一区_海角国产精品_欧美成人vps_精品视频在线观自拍自拍_亚洲视频网址_超碰caoporen国产 | 亚洲AV午夜福利精品一区二区_亚洲精品一区二区国产精华液_国产91在_亚洲精品在线观看一区二区_99久久99热这里只有精品_91久久久久久久久久久久久_哪里可以看免费的av_日韩有码第一页 | 日韩视频三区_色天天爱天天狠天天透_99精品成人_在线观看欧美一级_四虎影院观看视频在线观看_91伦理在线_亚洲AV无码久久_91最新 | 在线观看91精品国产麻豆_少妇p毛又多水又大又黑_超碰91人人_segui88久久综合_国产JIZZJIZZ麻豆全部免费_国产精品一区二区三区av麻_色多多污_四虎www4hv | 亚洲激情91_久久久久高潮综合影院_妓女av导航福利_把女邻居弄到潮喷的性经历_国产人成免费视频_国产亚洲成AⅤ人片在线观看不卡_日本免费a级片_亚洲人人在线 | 最近国产中文字幕_av在线免费播_亚洲裸男gv网站_www黄色毛片_四虎现在的网址是什么_欧美国产精品久久久乱码_亚洲一区二区三区四区在线免费观看_av美女网 | freexxxx性特大另类_69xx视频免费观看_国产三级国产精品国产普男人_国产欧美二区综合_555www成人网_东莞性视频88XXX_欧美一区二区三区视频_欧美国产一区二区三区激情无套 | 国产高清免费在线_国产美女久久久久_毛片在线不卡_亚洲在线一区二区_超碰免费视_24小时日本在线视频_国产啪视频1000部免费_精品国产一区二区三区四区阿崩 | 尤物视频在线观看_国产一区欧美_日韩三级av高清片_亚洲18页_久久一区二_精品这里只有精品_亚洲国产精品视频一区二区三区_人妻少妇精品一区二区三区 | av网页版_日日视频_靠逼视频免费网站_好吊妞在线_国产日产欧产美一二三区_久久精品中文_国产一级片自拍_中文字幕中文字字幕码一二区 | 欧美日韩国产综合在线_日本黄色高清_女人被男人躁得好爽免费视频_AV无码久久久久不卡免费网站_亚洲欧洲免费无码_在线播放免费视频播放_日韩国产精品一区二区三区_久久久久免费毛A片免费一瓶梅 | 亚洲天堂久久久久_野花社区wwW高清视频_一区二区三区四区在线观看国产日韩_久久破处_国产精品成人嫩草影院_国产老片播放_热久久美女精品天天吊色_凹凸精品视频分类视频 | 人妻互换精品一区二区_一区二区亚洲精品国产_久久在线_一本色道久久综合狠狠躁的番外_av中文字幕网站_www.xxx久久_成本大片免费播放网站_妖精森林的救世主动漫在线观看 | 午夜欧美精品久久久久久久_欧美XXXX黑人又粗又长_久久伊人热_久久综合国产_亚州精品中文_国产精品自拍区_九色最新网治_中文字幕日产乱码一二三区 | 午夜精品影院_中文JAPANESE在线播放_精品三级_林深见鹿40集高清免费观看_国产一级αv片免费观看_青草久久国产_超碰个人97_广西美女色炮150p图 | 最近国产中文字幕_av在线免费播_亚洲裸男gv网站_www黄色毛片_四虎现在的网址是什么_欧美国产精品久久久乱码_亚洲一区二区三区四区在线免费观看_av美女网 | tube性老少配bbwcom_无码被窝影院午夜看片爽爽_31xx视频在线影院_亚洲色图清纯制服_老师穿旗袍白丝让我爽翻天AV_久久精品久久久久久噜噜_国产极品视觉盛宴_粉嫩小泬无遮挡久久久久久 | 性色欧美_国产人妻午夜在线无码_亚洲国产天堂久久综合_国产无套粉嫩白浆在线观看_久久人人爽av_AAA级毛片_国产乱子精品视频免费_天天做天天爱天天高潮 | 三级网站免费观看_欧美乱妇高清无乱码免费_一天av在线高清免费观看_国产亚洲一区字幕_高清视频一区二区三区_成人福利片在线_久久这里只精品_久久精品国产99精品国产亚洲性色 | 国产精品6699_性饥渴艳妇性色生活片在线播放_国产黄色片av_精品一二_欧美日韩精品不卡一区二区三区_一级毛片真人免费视频_a级黄色片免费_国产二区视频在线观看 | 国产露脸饥渴孕妇在线播放_成人黄色片网站_麻豆99_国内另类在线_日韩无套_亚洲狠狠婷婷综合久久久久_亚洲精品16p_国产91高潮流白浆在线麻豆 | 91av视频在线免费观看_欧美黑人做爰爽爽爽_超碰自拍97_91视频第一页_亚色网站_99久久香蕉_无码人妻丰满熟妇区视频_人妻丝袜无码专区视频网站 | 麻豆freexxxx性91精品_又黄又湿啪啪响18禁_午夜一级精品_免费A级毛片出奶水_WWW国产内插视频_最近中文字幕视频高清_日韩欧美国产区_亚洲欧美国产国产一区二区 | 中国浓毛少妇毛茸茸_中文乱幕日产无线码_日本免费高清线视频免费_欧美在线小视频_久久久久久久久精_精品国产AV一区二区三区_亚洲欧美色αv在线影视_黄色精品免费 | 盗摄牛牛av影视一区二区_全国最大黄色网址_深夜福利网_一级特黄网站_乱丶伦丶图丶区一区二区_毛片黄片一级片_日本福利网_亚洲av高清不卡久久 | 男女好痛好深好爽视频一区_亚洲国产精品无码AV久久久_国产色中色_日韩视频在线观看免费_加勒比色老久久综合网_成人18在线_成人美女在线_九九视频这里只有精品 |